Одним из ключевых вопросов генетики человека является вопрос о строении и функционировании материальных ос­нов наследственности - страница 3

^ Глава 3. Цитогенетический метод.
В генетике человека используются разнообразные методы иссле­дования, применяемые и в других разделах биологии — генетике, физиологии, цитологии, биохимии и др. Антропогенетика располагает также собственными методами исследования: цитогенетическим, близнецовым, генеалогическим и др.4

Достижениями молекулярной биологии и биохимии внесен боль­шой вклад в развитие генетики. В настоящее время биохимическим и молекулярно-генетическим методам исследования принадлежит веду­щая роль в генетике человека и медицинской генетике. Однако и клас­сические методы генетики человека, такие как цитогенетический, генеалогический и близнецовый, имеют существенное значение в на­стоящее время, особенно в вопросах диагностики, медико-генетического консультирования и прогнозирования потомства.

Ознакомимся с возможностями цитогенетического метода.

Суть этого метода заключается в изучении строения отдельных хромосом, а также особенностей набора хромосом клеток человека в норме и патологии. Удобным объектом для этого служат лимфоциты, клетки эпителия щеки и другие клетки, которые легко получать, культивировать и подвергать кариологическому анализу. Это важный метод определения пола и хромосомных наследственных заболеваний человека.

Основой цитогенетического метода является изучение морфологии отдельных хромосом клеток человека. Современный этап познания строения хромосом характеризуется созданием молекулярных моделей этих важнейших структур ядра, изучением роли отдельных компо­нентов хромосом в хранении и передаче наследственной инфор­мации.

В главе 1 мы рассмотрели такие компоненты хромосом, как белки и нуклеиновые кислоты. Здесь же кратко остановимся на строении и морфологии хромосом.

^ Строение хромосом.

Хромосомную теорию наследственности создал американский уче­ный Т. Г. Морган. Проведя большое количество исследований на плодовой мушке дрозофиле, Морган и его ученики установили, что именно в хромосомах находятся открытые Менделем факторы наследственности, которые были названы генами. Т. Морган и его ученики показали, что гены расположены линейно по длине хромо­сомы.

После того как было доказано, что хромосомы являются осно­вными генофорами (носителями генов), начался период их наибо­лее интенсивного изучения. Успехи молекулярной биологии и генетики позволили понять некоторые закономерности строения и функциониро­вания хромосом прокариот и эукариот, однако многое здесь остается еще неизвестным. В последние годы хромосомы эукариот, особенно человека, становятся предметом изучения различных специалистов, начиная от генетиков и кончая физиками.

В
настоящее время установлено, что в основе строения хромосомы лежит хроматин — сложный комплекс ДНК, белков, РНК и других веществ, входящих в хромосому (строение хроматина мы подробно рассмотрели в главе 1). Предполагается, что в хромосому человека входит одна гигантская молекула ДНК, молекулы РНК, гистоны и кислые белки, различные ферменты, фосфолипиды, металлы Са2+, Mg2+ и некоторые другие вещества. Способ укладки и взаимного расположения молекул этих химических соединений в хромосоме пока не известен. Длинная нить ДНК не может располагаться в хромосоме беспорядочно. Существует предположение, что нить ДНК упакована закономерным образом и связана с белками.




Ф. Арриги и соавторы (1971) установили, что уникальные последо­вательности занимают более 56% ДНК хромосом человека, высокопов­торяющиеся — 12,4 %, промежуточные повторы — 8 %. Общее количество повторяющихся генов в ДНК хромосомы человека равно 28%. Число хромосом у человека длительное время оставалось невыяснен­ным. Дело в том, что опреде­лить количество хромосом у млекопитающих, особенно у человека, было трудно. Хромо­сомы оказались маленькими, весьма многочисленными, пло­хо поддавались подсчету. При фиксации клетки они слива­лись в комки, что затрудняло определение истинного числа хромосом. Поэтому первые исследователи не могли точно и правильно подсчитать коли­чество хромосом в клетках человека. Называлось разное количество хромосом — от 44 до 50.

Обычно хромосомы в клетках наблюдают во время митоза на ста­дии метафазной пластинки. В интерфазном ядре хромосомы в световой микроскоп не видны. В 1912 г. Г. Винивартер, изучая хромосомы в сперматогониях и оогониях половых желез человека, удаленных во время операции, установил, что мужской набор хромосом (кариотип) содержит 47 хромосом, а женский — 48. В 1922 г. Т. Пайнтер повторил исследования Винивартера и установил, что мужской и женский кариотипы содержат по 48 хромосом, но женский отличается от мужского только двумя хромосомами. У женщин находится 2 большие половые хромосомы, а у мужчины одна большая Х-хромосома и одна маленькая К-хромосома. В последующие годы эту точку зрения под­держивали и другие ученые. П. И. Живаго и А. Г. Андреа (1932) предложили первую классификацию хромосом в зависимости от их длины. Так как хромосомы очень близко располагаются одна около другой и их очень трудно исследовать, то и в последующие го­ды точное число хромосом у человека служило предметом споров и дискуссий. Однако постепенно было достигнуто согласие между исследователями по этому вопросу, и в течение 30 лет большинство цитогенетиков считало, что у человека диплоидное число хромосом равно 48, а гаплоидное — 24. Усовершенствованные методы изучения хро­мосом позволили получить более точные сведения о количестве хромо­сом в клетках у человека, а также выявить аномалии нормального кариотипа, ответственные за некоторые уродства. Особенно плодотвор­ным оказались два метода:

1. Обработка культуры клеток алкалоидом колхицином, который ведет к накоплению делящихся клеток на стадии метафазы;

2. Обработка клеток слабыми растворами солей, вызывающими набухание, расправление хромосом, что облегчает их исследование.

В 1956 г. шведские цитологи Дж. Тийо и А. Леван изготовили культуры клеток из тканей легких, взятых у абортированных челове­ческих эмбрионов и, используя усовершенствованную методику обра­ботки клеток, получили необычайно четкие препараты, в которых ясно было видно 46 хромосом.5

Несколькими месяцами позднее Ч. Форд и Дж. Хаммертон в Англии установили, что диплоидные предшественники половых клеток в се­менниках мужчин (сперматогонии) также имеют по 46 хромосом, а гаплоидные (сперматоциты 1-го деления) — по 23 хромосомы.

После этого были изучены многие клетки из разных органов и тканей человека и везде нормальное число хромосом оказалось равным 46.

Женский кариотип отличается от мужского только одной половой хромосомой. Остальные 22 пары одинаковы у мужчин и женщин. Эти 22 пары хромосом называются аутосомами. Нормальный кариотип состоит из 44 аутосом (22 пары) и двух половых хромосом — XX у женщин и XY у мужчин, т. е. женский кариотип имеет две большие половые хромосомы, а мужской — одну большую и одну малень­кую.

В половых клетках человека находится одинарный (гаплоидный) набор хромосом — 23, а в соматических клетках — двойной (диплоидный) набор — 46. Эти открытия стимулировали дальнейшее изу­чение хромосом. Были разработаны методы исследования хромосом в культуре лимфоцитов периферической крови и на других объектах. В настоящее время хромосомы относительно легко исследуют в лим­фоцитах периферической крови. Венозную кровь помещают в специ­альную питательную среду, добавляют фитогемаглютинин, который стимулирует клетки к делению, и помещают на 72 ч. в термостат. За 6 ч. до конца инкубации сюда добавляют колхицин, который за­держивает процесс деления клеток на стадии метафазной пластинки. Затем культуру помещают в гипотонический раствор NaCl, в котором клетки набухают, что приводит к легкому разрыву оболочек ядра и переходу хромосом в цитоплазму. После этого препараты окрашивают ядерными красителями, в частности ацетоорсеином, и рассматривают их в световом микроскопе с иммерсией.

Под микроскопом учитывают общее количество хромосом, фото­графируют их, затем из фото вырезают ножницами каждую хромосому и наклеивают на чистый лист бумаги в ряд, начиная от самой боль­шой (первой) хромосомы и кончая самой маленькой (двадцать второй) и половой Y-хромосомой. Люминесцентная методика позволяет быстро и просто проводить массовые исследования с целью выявления боль­ных с различными типами хромосомных аномалий. Совокупность коли­чественных (число хромосом и их размеры) и качественных (морфо­логия хромосом) признаков диплоидного набора единичной клетки обозначается термином “кариотип”. Строение хромосом изменяется в зависимости от стадии деления клеток (профазы, метафазы, анафазы, телофазы).

Уже в профазе митоза видно, что хромосома образована двумя взаимно переплетающимися нитями одинакового диаметра — хроматидами. В метафазе хромосома уже спирализована, и две ее хроматиды ложатся параллельно, разделенные узкой щелью. Каждая хроматида состоит из двух полухроматид. В результате митоза хроматиды мате­ринской хромосомы становятся сестринскими хромосомами, а полухроматиды — их хроматидами. В основе хроматид лежат хромонемы — так называют более тонкие нити ДНП, состоящие из белка и нуклеи­новых кислот.

В интерфазе (промежуток между двумя делениями клеток) хрома­тин тесно связан с ядерными мембранами и ядерным белковым матриксом. Он образует также большие участки деспирализованных ни­тей ДНП. Затем постепенно хроматин спирализуется, образуя типич­ные метафазные хромосомы. Размеры их варьируют от 2 до 10 микрон.

В настоящее время интенсивно исследуются структурные особен­ности аутосом и половых хромосом (на клетках костного мозга, лимфоцитах, фибробластах, клетках кожи, регенерирующей печени).

В хромосомах выявлены структуры, названные хромомерами. Хромомер — это спирализованный участок хромонемы. Промежутки меж­ду хромомерами представлены хромонемными нитями. Расположение хромомеров на каждой хромосоме строго фиксировано, наследственно детерминировано.

Хромомер — сравнительно крупная генетическая единица, сравни­мая по длине с хромосомой кишечной палочки. Строение и функция хромомера — основная загадка современной генетики. Предполагают, что некоторые хромомеры — это один генетический локус, где есть один структурный ген и много генов регуляторных. Возможно, в дру­гих хромомерах располагается несколько структурных генов.

Хромонемы и хромомеры окружены неокрашивающимся вещест­вом — матриксом. Полагают, что матрикс содержит дезоксирибонуклеиновую и рибонуклеиновую кислоты, белки.

Определенные участки хромосом образуют ядрышки. Ядрышки — это более или менее деспирализованные участки хромосом, окружен­ные продуктами деятельности генов (рибосомы, частицы РНК и т. п.). Здесь идет синтез рибосомальной РНК, а также осуществляются определенные этапы формирования рибосом. В нем синтезируется боль­шая часть РНК клетки.

В метафазной хромосоме различают еще несколько образований: центромеру, два плеча хромосомы, теломеры и спутник.

Центромерный (meros — по-гречески, часть) участок хромосомы — это неокрашивающийся разрыв в хромосоме, видимый на препарате хромосом. Центромера содержит 2—3 пары хромомер, имеет сложное строение. Предполагают, что она направляет движение хро­мосомы в митозе. К центромерам прикрепляются нити веретена.

Теломеры — специальные структуры на концах хромосом — также имеют сложное строение. В их состав входит несколько хромомер. Теломеры предотвращают концевое присоединение метафазных хромо­сом друг к другу. Отсутствие теломеров делает хромосому “липкой” — она легко присоединяется к другим фрагментам хромосом.

Одни участки хромосомы называются эухроматиновыми, другие — гетерохроматиновыми. Эухроматиновые районы хромосом — это гене­тически активные участки, они содержат основной комплекс функ­ционирующих генов ядер. Потеря даже мельчайшего фрагмента эухроматина может вызвать гибель организма. Гетерохроматиновые районы хромосом — обычно сильно спирализованы и, как правило, генети­чески мало активны. В гетерохроматине находится ядрышковый ор­ганизатор. Потеря даже значительной части гетерохроматина часто не приводит организм к гибели. Гетерохроматиновые участки хромосомы реплицируются позднее, чем эухроматиновые. Следует помнить, что эухроматин и гетерохроматин — это не вещество, а функциональ­ное состояние хромосомы.

Если расположить фотографии гомологичных хромосом по мере возрастания их размеров, то можно получить так называемую идиограмму кариотипа. Таким образом, идиограмма — это графическое изображение хромосом. На идиограмме пары гомологов располагаются рядами в порядке убывающего размера.

У человека на идиограмме среди 46 хромосом различают три типа хромосом в зависимости от положения в хромосоме центромер:

1. Метацентрические — центромера занимает центральное поло­жение в хромосоме, оба плеча хромосомы имеют почти одинаковую длину;

2. Субметацентрические — центромера располагается ближе к одному концу хромосомы, в результате чего плечи хромосомы разной длины.



Классификация хромосом человека по размеру и расположению центромера

Группа хромосом

Номер по кариотипу

Характеристика хромосом

А(1)

1,2,3

1 и 3 почти метацентрические и 2—крупная субметацентрическая

В (11)

4,5

крупные субакроцентрические

С (III)

6—12

средние субметацентрические

A(lV)

13—15

средние акроцентрические

E(V)

16-18

мелкие субметацентрические

F(VI)

19—20

самые мелкие мегацентрические

G(VII)

21—22

самые мелкие акроцентрические

Х-хромосома (относится к III группе

23

средняя почти метацентрическая

Y-хромосома

23

мелкая акроцентрическая


3. Акроцентрические — центромера находится у конца хромосо­мы. Одно плечо очень короткое, другое длинное. Хромосомы не очень легко отличать одну от другой. Цитогенетики с целью унификации методов идентификации хромосом на конференции в 1960 г. в г. Ден­вере (США) предложили классификацию, учитывающую величину хромосом и расположения центромер. Патау в том же году дополнил эту классификацию и предложил разделить хромосомы на 7 групп. Согласно этой классификации, к первой группе А относятся крупные 1, 2 и 3 суб- и акроцентрические хромосомы. Ко второй группе В — крупные Субметацентрические пары 4—5. К третьей группе С относят­ся средние субакроцентрические (6—12 пары) и Х-хромосома, которая по величине находится между 6 и 7 хромосомами. К группе Д (чет­вертой) относятся средние акроцентрические хромосомы (13, 14 и 15 пары). К группе Е (пятой)— мелкие Субметацентрические хромосомы (16, 17 и 18 пары). К группе F (шестой) мелкие метацентрические (19 и 20 пары), а к группе G (седьмой) — самые мелкие акроцентрические хромосомы (21 и 22 пары) и мелкая акроцентрическая половая Y-хромосома (табл. 4).

Существуют и другие классификации хромосом (Лондонская, Па­рижская, Чикагская), в которых развиты, конкретизированы и до­полнены положения Денверской классификации, что в конечном итоге облегчает идентификацию и обозначение каждой из хромосом человека и их частей.

Акроцентрические хромосомы IV группы (Д, 13—15 пары) и груп­пы VII (G, 21—22 пары) на коротком плече несут маленькие дополнительные структуры, так называемые сателлиты. В некото­рых случаях эти сателлиты являются причиной сцепления хромосом между собой при делении клеток в мейозе, вследствие чего происходит неравномерное распреде­ление хромосом. В одной половой клетке оказывается 22 хромосомы, а в другой — 24. Так возникают моносомии и трисомии по той или иной паре хро­мосом. Фрагмент одной хромосомы мо­жет присоединиться к хромосоме дру­гой группы (например, фрагмент 21 или 22 присоединяется к 13 или 15). Так возникает транслокация. Трисомия 21-й хромосомы или транслокация ее фраг­мента являются причиной болезни Дауна.

Внутри семи этих групп хромосом на основании лишь внешних различий, видимых в простой микроскоп, провести идентификацию хромосом почти невоз­можно. Но при обработке хромосом акрихини притом и при помощи ряда дру­гих методов окраски их можно иден­тифицировать. Известны различные

способы дифференциальной окраски хромосом по Q-, G-, С-технике (А. Ф.Захаров, 1973) (рис. 27). Назовем некоторые методы идентифи­кации индивидуальных хромосом человека. Широко применяются раз­личные модификации так называемого метода Q. Например, метод QF — с использованием флюорохромов; метод QFQ — с использованием акрихина; метод QFH — с использованием специального красителя фир­мы “Хекст” № 33258, выявляющего повторяющиеся последовательности нуклеотидов в ДНК хромосом (сателлитную ДНК и т. п.). Мощным средством изучения и индивидуальной характеристики хромосом явля­ются модификации трипсинового метода GT. Назовем, например, GTG-метод, включающий обработку хромосом трипсином и окраску краси­телем Гимза, GTL-метод (обработка трипсином и окраска по Лейтману).

Известны методы с обработкой хромосом ацетатными солями и красителем Гимза, методы с использованием гидроокиси бария, акридиноранжа и другие.

ДНК хромосом выявляется при помощи реакции Фельгена, окраски метиловым зеленым, акридиноранжем, красителем № 33258 фирмы “Хекст”. Акридиноранжевый краситель с ДНК однонитчатой образует димерные ассоциаты и дает красную люминесценцию, с двунитчатой спиральной ДНК образует одномерные ассоциаты и люминесцирует зеленым светом.

Измеряя интенсивность красной люминесценции, можно судить о количестве свободных мест в ДНП и хроматине, а отношение зеле­ная — красная люминесценция — о функциональной активности хро­мосом.

Гистоны и кислые белки хромосом выявляются при различных рН окраской бромфенодовым синим, зеленым прочным, серебрением, иммунолюминесцентным методом, РНК — окраской галлюцианиновыми квасцами, красителем фирмы “Хекст” № 1, акридиноранжем при нагревании до 60°.

Широко применяются электронная микроскопия, гистоавторадиография и ряд других методов.

В 1969 г. шведский биолог Т. Касперссон и его сотрудники пока­зали, что хромосомы, окрашенные горчичным акрихином и освещенные под микроскопом Наиболее длинноволновой частью ультрафиолетового спектра, начинают люминесцировать, причем одни участки хромосом светятся ярче, другие слабее. Причина этого — разный химический состав поверхности хромосомы. В последующие годы исследователи обнаружили, что концы Y-хромосомы человека светятся ярче любой другой хромосомы человека, поэтому Y-хромосому легко заметить на препарате.

Акрихиниприт преимущественно связывается с ГЦ-парами ДНК. Флюоресцируют отдельные диски гетерохроматиновых участков. Уда­ляют ДНК — свечение исчезает. Составлены карты флюоресцирующих хромосом. Из 27 видов млекопитающих только у человека, шимпанзе, гориллы и орангутанга светятся Y-хромосомы. Свечение связано с повторами генов, которые появились в эволюции 20 млн. лет назад.

Итак, в норме в соматических клетках человека находится 46 хромосом (23 пары), а в половых — 23 хромосомы, по одной хромо­соме каждой пары. При слиянии сперматозоида и яйцеклетки в зиготе количество хромосом удваивается. Таким образом, каждая сомати­ческая клетка организма человека содержит один набор отцовских хромосом и один набор материнских хромосом. Если у человека 46 хромосом, то у различных обезьян число хромосом равно 34, 42, 44, 54, 60, 66.

При действии ультразвука или высокого давления можно добиться разрыва нитей ДНК, которые входят в состав хромосомы, на отдель­ные фрагменты. Подогревая растворы ДНК до температуры 80—100°,

можно вызвать денатурацию ДНК, расхождение двух составляющих ее нитей. При определенных условиях разъединенные нити ДНК могут снова реассоциировать в устойчивую двунитчатую молекулу ДНК (реассоциация или ренатурация ДНК). Денатурацию и ренатурацию ДНК можно получить и на препаратах фиксированных хромосом, обрабатывая их соответствующим образом. Если после этого хромосо­мы окрасить красителем Гимза, то в них выявляется четкая поперечная исчерченность, состоящая из светлых и темных полос. Расположение этих полос в каждой хромосоме разное. Таким образом, по “Гимза-дискам” можно также идентифицировать каждую из 23 пар хро­мосом.

Этими и другими методиками, особенно гибридизацией соматиче­ских клеток различных животных и человека, пользуются для картиро­вания хромосом, т. е. для определения положения разных генов в той или иной хромосоме. В настоящее время в аутосомах и половых хро­мосомах человека картировано около 200 генов.

На конец 1975 г. было локализовано следующее количество генов в различных хромосомах человека (А. Ф. Захаров, 1977): 1 хромосома — 24 гена; 2 хромосомы — 10, 3—2, 4—3, 5—3, 6—14, 7—4, 8—1, 9—8, 10—5, 11—4, 12—10, 13—3, 14—3, 15—6, 16—4, 17—14, 18—1, 19—4, 20—3, 21—4, 22—1; Y-хромосома — 2; Х-хромосома — 95 генов.

5430130028818419.html
5430201596611977.html
5430270355712518.html
5430346379834360.html
5430495964564357.html